ENDOCRINE DISRUPTORS FROM COMBUSTION AND VEHICULAR EMISSIONS: IDENTIFICATION AND SOURCE NOMINATION

Brian Gullett^{1*}, Jeff Ryan¹, Paul Lemieux¹, Carolyn Acheson², Michael DeVito³, James Rabinowitz³, Sukh Sidhu⁴, Richard Striebich⁴, Joy Klosterman⁴

U.S. Environmental Protection Agency

¹National Risk Management Research Laboratory, Air Pollution Prevention and Control Division (MD-65), Research Triangle Park, NC 27711

²National Risk Management Research Laboratory, Cincinnati, OH 45268

³National Health and Environmental Effects Research Laboratory, Toxicology Division, Research Triangle Park, NC 27711

⁴University of Dayton Research Institute, 300 College Park, Dayton, OH 45469

*919-541-1534, 919-541-0554 (fax), gullett.brian@epa.gov

BACKGROUND

- A significant fraction of organic emissions from combustion sources remains uncharacterized
- 100's of compounds are emitted
 - e.g., PAHs, oxygenates, alkyl phenols
- We only see what we specifically look for
 - e.g., PCDD/Fs "dioxins"
- EDCs are emitted from combustion sources
 - e.g., PCDD/F, PCB, Hg
- Combustion sources are ubiquitous
 - constitute a major exposure source

GAS PHASE, AROMATIC PRECURSORS – How do we get complex aromatic structures?

OBJECTIVE

We will survey combustion sources for potential endocrine disruption activity, try to isolate the compounds responsible for such activity, and attempt to estimate their emission factors.

APPROACH

- Opportunistic combustion source sampling
 - domestic waste burning, diesel trucks (HDDVs), forest fires, fireplaces, and woodstove....others.
- Bioassays
 - Yeast estrogen assay
 - CALUX
 - Vitellogenin mRNA Assay
- Sample fractionation to isolate target compounds
 - HPLC technique (L. Brooks)
 - Capillary Electrophoresis
 - TIE method (G. Ankley)
- Multi Dimensional Gas Chromatography
 - diagram/description
- QSAR, Statistical analyses
 - Structure clues

Source Characterization

- Done
 - diesel truck
 - woodstove
 - sewage sludge incinerator
 - domestic waste

- Future
 - pine straw
 - structural fires
 - oil spill fire
 - municipal waste, full scale
 - DoD diesel truck

On-Road Diesel Sampling

"Uncontrolled" Burning Sources

Burning of Domestic Waste

CA PCDD/F, PCB Sources?

QUADRA-FIRE

FIREPLACE

WOODSTOVE

SAMPLE CHARACTERIZATION

Yeast Estrogen Screen

Environmental Estrogens Responding to Yeast Screen

- Row A = Bisphenol
 Row C = Genistein
 Row E = Nonyphenol
 Row F = Octylphenol
 Row H = 17β-Estradiol
 Rows B,D,and G (blank)
- Deep Red Color indicates Estrogenic Activity
- Yellow indicates Background (β-gal)

Gas Chromatography/Mass Spectroscopy

Abundance

Time (min)

Combustion Pollutant Analysis via Multidimensional Gas Chromatography (courtesy of UDRI)

Examples of oxygenates in diesel extracts using MDGC-MS (scanning mode)

• Benzaldehyde

 ${\color{red}\bullet} Hydroxybenzaldehyde$

• Methylbenzaldehyde

•Naphthalene dione

Dibenzofuran

•Hydroxybiphenyl

Xanthene

•Naphthalenecarboxaldehyde

Examples of Oxygenates from Barrel Burn Extract

() denotes Match Quality out of 100

hydroxy cyclopentanone (7) •benzaldehyde (87) substituted cyclohexanone (72) •phenol (80) methyl quinol (90) •alkyl phenols (72 - 91)methoxy methyl phenol (93)

hydroxy phenyl

butadiene (64)

- •benzene ethanol 3methoxy (52) •benzoic acid (64) •4-ethyl-2-methoxy phenol (90) •benzendiol (90) dimethyl anisole (27) •eugenol (96) •ethyl vanillin (5) methoxy propenyl phenol (90)
- dihydroxy dimethyl benzaldehyde (5) •long chain carboxylic acids Hydroxy methoxy phenyl ethanone (72) •hydroxy methoxy HO phenyl propanone methyl benzenediol (78)methoxy propyl phenol (64) •vanillin (78)

Examples of PAH from Barrel Burn Extract

() denotes Match Quality out of 100

- •fluoro-biphenyl (72)
 •biphenyl (83)
- •me-biphenyl (80)
- •dimethyl phenanthrene (64)
- •tetramethyl phenanthrene (38)
- biphenylene (72)
 acenaphthalene (80)
 bibenzyl (74)
 phenanthrene or anthracene (72)
 fluoranthene or
- •vinyl naphthalene (48)

pyrene (72)

- •fluorene (90)
- •methyl fluorene (74)
- •phenyl naphthalene (69)
- •methyl phenanthrene (43)

Examples of Oxy-PAH from Barrel Burn Extract

() denotes Match Quality out of 100

•benzofuran (83)

•methyl benzofuran (72)

•phthalic anhydride (86)

ENDOCRINE DISRUPTORS FROM COMBUSTION AND VEHICULAR EMISSIONS: IDENTIFICATION AND SOURCE NOMINATION

Brian Gullett^{1*}, Clyde Owens¹, Jeff Ryan¹, Paul Lemieux¹,
Carolyn Acheson²,
Michael DeVito³, James Rabinowitz³,
Sukh Sidhu⁴,
Richard Striebich⁴, Joy Klosterman⁴

U.S. Environmental Protection Agency

¹National Risk Management Research Laboratory, Air Pollution Prevention and Control Division (MD-65), Research Triangle Park, NC 27711

 ²National Risk Management Research Laboratory, Cincinnati, OH 45268
 ³National Health and Environmental Effects Research Laboratory, Toxicology Division, Research Triangle Park, NC 27711

⁴University of Dayton Research Institute, 300 College Park, Dayton, OH 45469 *919-541-1534, 919-541-0554 (fax), gullett.brian@epa.gov